This page intentionally left blank.
Appendix A Noise Metrics
This page intentionally left blank.
A.1 Aircraft Noise Terminology

Noise is a complex physical quantity. The properties, measurement, and presentation of noise involve specialized terminology that can be difficult to understand. To provide a basic reference on these technical issues, this section introduces fundamentals of noise terminology, the effects of noise on human activity, and noise propagation.

A.1.1 Introduction to Noise Terminology

Analyses of potential impacts from changes in aircraft noise levels rely largely on a measure of cumulative noise exposure over an entire calendar year, expressed in terms of a metric called the Day-Night Average Sound Level (DNL). However, DNL does not provide an adequate description of noise for many purposes. A variety of measures, which are further described in subsequent sub-sections, are available to address essentially any issue of concern, including:

- Sound Pressure Level, SPL, and the Decibel, dB
- A-Weighted Decibel, dBA
- Maximum A-Weighted Sound Level, \(L_{\text{max}} \)
- Sound Exposure Level, SEL
- Equivalent A-Weighted Sound Level, \(L_{\text{eq}} \)
- Day-Night Average Sound Level, DNL

A.1.2 Sound Pressure Level, SPL, and the Decibel, dB

All sounds come from a sound source – a musical instrument, a voice speaking, an airplane passing overhead. It takes energy to produce sound. The sound energy produced by any sound source travels through the air in sound waves – tiny, quick oscillations of pressure just above and just below atmospheric pressure. The ear senses these pressure variations and – with much processing in our brain – translates them into “sound.”

Our ears are sensitive to a wide range of sound pressures. The loudest sounds that we can hear without pain contain about one million times more energy than the quietest sounds we can detect. To allow us to perceive sound over this very wide range, our ear/brain “auditory system” compresses our response in a complex manner, represented by a term called sound pressure level (SPL), which we express in units called decibels (dB).
Mathematically, SPL is a logarithmic quantity based on the ratio of two sound pressures, the numerator being the pressure of the sound source of interest (P_{source}), and the denominator being a reference pressure ($P_{reference}$)

$$Sound \ Pressure \ Level \ (SPL) = 20 \log \left(\frac{P_{source}}{P_{reference}} \right) dB$$

The logarithmic conversion of sound pressure to SPL means that the quietest sound that we can hear (the reference pressure) has a sound pressure level of about 0 dB, while the loudest sounds that we hear without pain have sound pressure levels of about 120 dB. Most sounds in our day-to-day environment have sound pressure levels from about 40 to 100 dB.

Because decibels are logarithmic quantities, we cannot use common arithmetic to combine them. For example, if two sound sources each produce 100 dB operating individually, when they operate simultaneously, they produce 103 dB -- not the 200 dB we might expect. Increasing to four equal sources operating simultaneously will add another three decibels of noise, resulting in a total SPL of 106 dB. For every doubling of the number of equal sources, the SPL goes up another three decibels.

If one noise source is much louder than another is, the louder source "masks" the quieter one and the two sources together produce virtually the same SPL as the louder source alone. For example, a 100 dB and 80 dB sources produce approximately 100 dB of noise when operating together.

Two useful "rules of thumb" related to SPL are worth noting: (1) humans generally perceive a six to 10 dB increase in SPL to be about a doubling of loudness, and (2) changes in SPL of less than about three decibels for a particular sound are not readily detectable outside of a laboratory environment.

A.1.3 A-Weighted Decibel

An important characteristic of sound is its frequency, or "pitch." This is the per-second oscillation rate of the sound pressure variation at our ear, expressed in units known as Hertz (Hz).

When analyzing the total noise of any source, acousticians often break the noise into frequency components (or bands) to consider the "low," "medium," and "high" frequency components. This breakdown is important for two reasons:

- Our ear is better equipped to hear mid and high frequencies and is least sensitive to lower frequencies. Thus, we find mid- and high-frequency noise more annoying.

1 The reference pressure is approximately the quietest sound that a healthy young adult can hear.
2 The logarithmic ratio used in its calculation means that SPL changes relatively quickly at low sound pressures and more slowly at high pressures. This relationship matches human detection of changes in pressure. We are much more sensitive to changes in level when the SPL is low (for example, hearing a baby crying in a distant bedroom), than we are to changes in level when the SPL is high (for example, when listening to highly amplified music).
3 A "10 dB per doubling" rule of thumb is the most often used approximation.
• Engineering solutions to noise problems differ with frequency content. Low-frequency noise is generally harder to control.

The normal frequency range of hearing for most people extends from a low of about 20 Hz to a high of about 10,000 to 15,000 Hz. Most people respond to sound most readily when the predominant frequency is in the range of normal conversation – typically around 1,000 to 2,000 Hz. The acoustical community has defined several “filters,” which approximate this sensitivity of our ear and thus, help us to judge the relative loudness of various sounds made up of many different frequencies.

The so-called "A" filter (“A weighting”) generally does the best job of matching human response to most environmental noise sources, including natural sounds and sound from common transportation sources. “A-weighted decibels” are abbreviated “dBA.” Because of the correlation with our hearing, the U. S. Environmental Protection Agency (EPA) and nearly every other federal and state agency have adopted A-weighted decibels as the metric for use in describing environmental and transportation noise. Figure 1 depicts A-weighting adjustments to sound from approximately 20 Hz to 10,000 Hz.

![Figure 1. A-Weighting Frequency Response](source)

As the figure shows, A-weighting significantly de-emphasizes noise content at lower and higher frequencies where we do not hear as well, and has little effect, or is nearly “flat,” in for mid-range frequencies between 1,000 and 5,000 Hz. All sound pressure levels presented in this document are A-weighted unless otherwise specified.

Figure 2 depicts representative A-weighted sound levels for a variety of common sounds.
Maximum A-Weighted Sound Level, L_{max}

An additional dimension to environmental noise is that A-weighted levels vary with time. For example, the sound level increases as a car or aircraft approaches, then falls and blends into the background as the aircraft recedes into the distance. The background or “ambient” level continues to vary in the absence of a distinctive source, for example due to birds chirping, insects buzzing, leaves rustling, etc. It is often convenient to describe a particular noise “event” (such as a vehicle passing by, a dog barking, etc.) by its maximum sound level, abbreviated as L_{max}.

Figure 3 depicts this general concept, for a hypothetical noise event with an L_{max} of approximately 102 dB.

Figure 2. A-Weighted Sound Levels for Common Sounds

Source: HMMH

<table>
<thead>
<tr>
<th>Common Outdoor Sound Levels</th>
<th>Noise Level (dB)</th>
<th>Common Indoor Sound Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>110</td>
<td>Rock Band</td>
</tr>
<tr>
<td>Diesel Truck at 50 Feet</td>
<td>90</td>
<td>Inside Subway Train (New York)</td>
</tr>
<tr>
<td>Air Compressor at 50 Feet</td>
<td>80</td>
<td>Food Blender at 3 Feet</td>
</tr>
<tr>
<td>Lawn Tiller at 50 Feet</td>
<td>70</td>
<td>Shouting at 3 Feet</td>
</tr>
<tr>
<td>Quiet Urban Daytime</td>
<td>60</td>
<td>Normal Speech at 3 Feet</td>
</tr>
<tr>
<td>Quiet Urban Nighttime</td>
<td>50</td>
<td>Dishwasher Next Room</td>
</tr>
<tr>
<td>Quiet Suburban Nighttime</td>
<td>40</td>
<td>Small Theater, Large Conference Room (Background)</td>
</tr>
<tr>
<td>Quiet Rural Nighttime</td>
<td>30</td>
<td>Bedroom at Night</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Concert Hall (Background)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Threshold of Hearing</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
While the maximum level is easy to understand, it suffers from a serious drawback when used to describe the relative “noisiness” of an event such as an aircraft flyover; i.e., it describes only one dimension of the event and provides no information on the event’s overall, or cumulative, noise exposure. In fact, two events with identical maximum levels may produce very different total exposures. One may be of very short duration, while the other may continue for an extended period and be judged much more annoying. The next section introduces a measure that accounts for this concept of a noise “dose,” or the cumulative exposure associated with an individual “noise event” such as an aircraft flyover.

A.1.5 Sound Exposure Level, SEL

The most commonly used measure of cumulative noise exposure for an individual noise event, such as an aircraft flyover, is the Sound Exposure Level, or SEL. SEL is a summation of the A-weighted sound energy over the entire duration of a noise event. SEL expresses the accumulated energy in terms of the one-second-long steady-state sound level that would contain the same amount of energy as the actual time-varying level.

SEL provides a basis for comparing noise events that generally match our impression of their overall “noisiness,” including the effects of both duration and level. The higher the SEL, the more annoying a noise event is likely to be. In simple terms, SEL “compresses” the energy for the noise event into a single second. Figure 4 depicts this compression, for the same hypothetical event shown in Figure 3. Note that the SEL is higher than the L_{max}.

![Figure 3. Variation in A-Weighted Sound Level over Time and Maximum Noise Level](image)
The “compression” of energy into one second means that a given noise event’s SEL will almost always be a higher value than its \(L_{\text{max}} \). For most aircraft flyovers, SEL is roughly five to 12 dB higher than \(L_{\text{max}} \). Adjustment for duration means that relatively slow and quiet propeller aircraft can have the same or higher SEL than faster, louder jets, which produce shorter duration events.

A.1.6 Equivalent A-Weighted Sound Level, \(L_{\text{eq}} \)

The Equivalent Sound Level, abbreviated \(L_{\text{eq}} \), is a measure of the exposure resulting from the accumulation of sound levels over a particular period of interest; e.g., one hour, an eight-hour school day, nighttime, or a full 24-hour day. \(L_{\text{eq}} \) plots for consecutive hours can help illustrate how the noise dose rises and falls over a day or how a few loud aircraft significantly affect some hours.

\(L_{\text{eq}} \) may be thought of as the constant sound level over the period of interest that would contain as much sound energy as the actual varying level. It is a way of assigning a single number to a time-varying sound level. Figure 5 illustrates this concept for the same hypothetical event shown in Figure 3 and Figure 4. Note that the \(L_{\text{eq}} \) is lower than either the \(L_{\text{max}} \) or SEL.
A.1.7 Day-Night Average Sound Level, DNL or L_{dn}

The FAA requires that airports use a measure of noise exposure that is slightly more complicated than L_{eq} to describe cumulative noise exposure – the Day-Night Average Sound Level, DNL.

The U.S. EPA identified DNL as the most appropriate means of evaluating airport noise based on the following considerations.4

- The measure should be applicable to the evaluation of pervasive long-term noise in various defined areas and under various conditions over long periods.
- The measure should correlate well with known effects of the noise environment and on individuals and the public.
- The measure should be simple, practical, and accurate. In principal, it should be useful for planning as well as for enforcement or monitoring purposes.
- The required measurement equipment, with standard characteristics, should be commercially available.
- The measure should be closely related to existing methods currently in use.
- The single measure of noise at a given location should be predictable, within an acceptable tolerance, from knowledge of the physical events producing the noise.

• The measure should lend itself to small, simple monitors, which can be left unattended in public areas for long periods.

Most federal agencies dealing with noise have formally adopted DNL. The Federal Interagency Committee on Noise (FICON) reaffirmed the appropriateness of DNL in 1992. The FICON summary report stated: “There are no new descriptors or metrics of sufficient scientific standing to substitute for the present DNL cumulative noise exposure metric.”

In 2015, the FAA began a multi-year effort to update the scientific evidence on the relationship between aircraft noise exposure and its effects on communities around airports.\(^5\) This was the most comprehensive study using a single noise survey ever undertaken in the United States, polling communities surrounding 20 airports nationwide. The FAA Reauthorization Act of 2018 under Section 188 and 173, required FAA to complete the evaluation of alternative metrics to the DNL standard within one year. The Section 188 and 173 Report to Congress was delivered on April 14, 2020\(^6\) and concluded that while no single noise metric can cover all situations, DNL provides the most comprehensive way to consider the range of factors influencing exposure to aircraft noise. In addition, use of supplemental metrics is both encouraged and supported to further disclose and aid in the public understanding of community noise impacts. The full study supporting these reports was released in January 2021. If changes are warranted in the use of DNL, which DNL level to assess or the use of supplemental metrics, FAA will propose revised policy and related guidance and regulations, subject to interagency coordination, as well as public review and comment.

In simple terms, DNL is the 24-hour Leq with one adjustment; all noises occurring at night (defined as 10 p.m. through 7 a.m.) are increased by 10 dB, to reflect the added intrusiveness of nighttime noise events when background noise levels decrease. In calculating aircraft exposure, this 10 dB increase is mathematically identical to counting each nighttime aircraft noise event ten times.

DNL can be measured or estimated. Measurements are practical only for obtaining DNL values for limited numbers of points, and, in the absence of a permanently installed monitoring system, only for relatively short periods. Most airport noise studies use computer-generated DNL estimates depicted as equal-exposure noise contours (much as topographic maps have contours of equal elevation).

The annual DNL is mathematically identical to the DNL for the average annual day; i.e., a day on which the number of operations is equal to the annual total divided by 365 (366 in a leap year). Figure 6 graphically depicts the manner in which the nighttime adjustment applies in calculating DNL. Figure 7 presents representative outdoor DNL values measured at various U.S. locations.

\(^6\) Federal Aviation Administration. Report to Congress on an evaluation of alternative noise metrics. https://www.faa.gov/about/plans_reports/congress/media/Day-Night_Average_Sound_Levels_COMPLETED_report_w_letters.pdf
Figure 6. Example of a Day-Night Average Sound Level Calculation

Source: HMMH
Figure 7. Examples of Measured Day-Night Average Sound Levels, DNL